390 research outputs found

    Improving hyperspectral band selection by constructing an estimated reference map

    Get PDF
    We investigate band selection for hyperspectral image classification. Mutual information (MI) measures the statistical dependence between two random variables. By modeling the reference map as one of the two random variables, MI can, therefore, be used to select the bands that are more useful for image classification. A new method is proposed to estimate the MI using an optimally constructed reference map, reducing reliance on ground-truth information. To reduce the interferences from noise and clutters, the reference map is constructed by averaging a subset of spectral bands that are chosen with the best capability to approximate the ground truth. To automatically find these bands, we develop a searching strategy consisting of differentiable MI, gradient ascending algorithm, and random-start optimization. Experiments on AVIRIS 92AV3C dataset and Pavia University scene dataset show that the proposed method outperformed the benchmark methods. In AVIRIS 92AV3C dataset, up to 55% of bands can be removed without significant loss of classification accuracy, compared to the 40% from that using the reference map accompanied with the dataset. Meanwhile, its performance is much more robust to accuracy degradation when bands are cut off beyond 60%, revealing a better agreement in the MI calculation. In Pavia University scene dataset, using 45 bands achieved 86.18% classification accuracy, which is only 1.5% lower than that using all the 103 bands

    A novel high-resolution optical instrument for imaging oceanic bubbles

    Get PDF
    The formation of bubbles from breaking waves has a significant effect on air-sea gas transfer and aerosol production. Detailed data in situ about the bubble populations are required to understand these processes. However, these data are difficult to acquire because bubble populations are complex, spatially inhomogeneous, and short lived. This paper describes the design and development of a novel high-resolution underwater optical instrument for imaging oceanic bubbles at the sea. The instrument was successfully deployed in 2013 as part of the HiWINGS campaign in the North Atlantic Ocean. It contains a high-resolution machine vision camera, strobe flash unit to create a light sheet, and single board computer to control system operation. The instrument is shown to successfully detect bubbles of radii in the range 20-10 000 μm

    Fall risk in people with MS: A Physiological Profile Assessment study.

    Get PDF
    INTRODUCTION: The Physiological Profile Assessment (PPA) is used in research and clinical practice for assessing fall risk. We compared PPA test performance between people with multiple sclerosis (MS) and healthy controls, determined the fall-risk profile for people with MS and developed a reference database for people with MS. METHODS: For this study, 416 ambulant people with MS (51.5 ± 12.0 years) and 352 controls (52.8 ± 12.2 years) underwent the PPA (tests of contrast sensitivity, proprioception, quadriceps strength, reaction time and sway) with composite fall-risk scores computed from these measures. MS participants were followed prospectively for falls for 3 months. RESULTS: The MS participants performed significantly worse than controls in each PPA test. The average composite fall-risk score was also significantly elevated, indicating a "marked" fall risk when compared with controls. In total, 155 MS participants (37.3%) reported 2 + falls in the follow-up period. Frequent fallers performed significantly worse than non-frequent fallers in the contrast sensitivity, reaction time and sway tests and had higher PPA composite scores. CONCLUSIONS: In line with poor PPA test performances, falls incidence in people with MS was high. This study provides comprehensive reference data for the PPA measures for people with MS that could be used to inform future research and clinical practice

    Debris cover and surface melt at a temperate maritime alpine glacier: Franz Josef Glacier, New Zealand

    Get PDF
    Melt rates on glaciers are strongly influenced by the presence of supraglacial debris, which can either enhance or reduce ablation relative to bare ice. Most recently, Franz Josef Glacier has entered into a phase of strong retreat and downwasting, with the increasing emergence of debris on the surface in the ablation zone. Previously at Franz Josef Glacier, melt has only been measured on bare ice. During February 2012, a network of 11 ablation stakes was drilled into locations of varying supraglacial debris thickness on the lower glacier. Mean ablation rates over 9 days varied over the range 1.2–10.1 cm d−1, and were closely related to debris thickness. Concomitant observations of air temperature allowed the application of a degree-day approach to the calculation of melt rates, with air temperature providing a strong indicator of melt. Degree-day factors (d f) varied over the range 1.1–8.1 mm d−1 °C−1 (mean of 4.4 mm d−1 °C−1), comparable with rates reported in other studies. Mapping of the current debris cover revealed 0.7 km2 of the 4.9 km2 ablation zone surface was debris-covered, with thicknesses ranging 1–50 cm. Based on measured debris thicknesses and d f, ablation on debris-covered areas of the glacier is reduced by a total of 41% which equates to a 6% reduction in melt overall across the entire ablation zone. This study highlights the usefulness of a short-term survey to gather representative ablation data, consistent with numerous overseas ablation studies on debris-covered glaciers

    Clinical array-based karyotyping of breast cancer with equivocal HER2 status resolves gene copy number and reveals chromosome 17 complexity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>HER2 </it>gene copy status, and concomitant administration of trastuzumab (Herceptin), remains one of the best examples of targeted cancer therapy based on understanding the genomic etiology of disease. However, newly diagnosed breast cancer cases with equivocal HER2 results present a challenge for the oncologist who must make treatment decisions despite the patient's unresolved HER2 status. In some cases both immunohistochemistry (IHC) and fluorescence <it>in situ </it>hybridization (FISH) are reported as equivocal, whereas in other cases IHC results and FISH are discordant for positive versus negative results. The recent validation of array-based, molecular karyotyping for clinical oncology testing provides an alternative method for determination of HER2 gene copy number status in cases remaining unresolved by traditional methods.</p> <p>Methods</p> <p>In the current study, DNA extracted from 20 formalin fixed paraffin embedded (FFPE) tissue samples from newly diagnosed cases of invasive ductal carcinoma referred to our laboratory with unresolved HER2 status, were analyzed using a clinically validated genomic array containing 127 probes covering the HER2 amplicon, the pericentromeric regions, and both chromosome 17 arms.</p> <p>Results</p> <p>Array-based comparative genomic hybridization (array CGH) analysis of chromosome 17 resolved HER2 gene status in [20/20] (100%) of cases and revealed additional chromosome 17 copy number changes in [18/20] (90%) of cases. Array CGH analysis also revealed two false positives and one false negative by FISH due to "ratio skewing" caused by chromosomal gains and losses in the centromeric region. All cases with complex rearrangements of chromosome 17 showed genome-wide chromosomal instability.</p> <p>Conclusions</p> <p>These results illustrate the analytical power of array-based genomic analysis as a clinical laboratory technique for resolution of HER2 status in breast cancer cases with equivocal results. The frequency of complex chromosome 17 abnormalities in these cases suggests that the two probe FISH interphase analysis is inadequate and results interpreted using the HER2/CEP17 ratio should be reported "with caution" when the presence of centromeric amplification or monosomy is suspected by FISH signal gains or losses. The presence of these pericentromeric copy number changes may result in artificial skewing of the HER2/CEP17 ratio towards false negative or false positive results in breast cancer with chromosome 17 complexity. Full genomic analysis should be considered in all cases with complex chromosome 17 aneusomy as these cases are likely to have genome-wide instability, amplifications, and a poor prognosis.</p

    Two Stellar Components in the Halo of the Milky Way

    Full text link
    The halo of the Milky Way provides unique elemental abundance and kinematic information on the first objects to form in the Universe, which can be used to tightly constrain models of galaxy formation and evolution. Although the halo was once considered a single component, evidence for its dichotomy has slowly emerged in recent years from inspection of small samples of halo objects. Here we show that the halo is indeed clearly divisible into two broadly overlapping structural components -- an inner and an outer halo -- that exhibit different spatial density profiles, stellar orbits and stellar metallicities (abundances of elements heavier than helium). The inner halo has a modest net prograde rotation, whereas the outer halo exhibits a net retrograde rotation and a peak metallicity one-third that of the inner halo. These properties indicate that the individual halo components probably formed in fundamentally different ways, through successive dissipational (inner) and dissipationless (outer) mergers and tidal disruption of proto-Galactic clumps.Comment: Two stand-alone files in manuscript, concatenated together. The first is for the main paper, the second for supplementary information. The version is consistent with the version published in Natur

    Head and neck cancer predictive risk estimator to determine control and therapeutic outcomes of radiotherapy (HNC-PREDICTOR):development, international multi-institutional validation, and web implementation of clinic-ready model-based risk stratification for head and neck cancer

    Get PDF
    Background: Personalised radiotherapy can improve treatment outcomes of patients with head and neck cancer (HNC), where currently a ‘one-dose-fits-all’ approach is the standard. The aim was to establish individualised outcome prediction based on multi-institutional international ‘big-data’ to facilitate risk-based stratification of patients with HNC. Methods: The data of 4611 HNC radiotherapy patients from three academic cancer centres were split into four cohorts: a training (n = 2241), independent test (n = 786), and external validation cohorts 1 (n = 1087) and 2 (n = 497). Tumour- and patient-related clinical variables were considered in a machine learning pipeline to predict overall survival (primary end-point) and local and regional tumour control (secondary end-points); serially, imaging features were considered for optional model improvement. Finally, patients were stratified into high-, intermediate-, and low-risk groups. Results: Performance score, AJCC8th stage, pack-years, and Age were identified as predictors for overall survival, demonstrating good performance in both the training cohort (c-index = 0.72 [95% CI, 0.66–0.77]) and in all three validation cohorts (c-indices: 0.76 [0.69–0.83], 0.73 [0.68–0.77], and 0.75 [0.68–0.80]). Excellent stratification of patients with HNC into high, intermediate, and low mortality risk was achieved; with 5-year overall survival rates of 17–46% for the high-risk group compared to 92–98% for the low-risk group. The addition of morphological image feature further improved the performance (c-index = 0.73 [0.64–0.81]). These models are integrated in a clinic-ready interactive web interface: https://uic-evl.github.io/hnc-predictor/ Conclusions: Robust model-based prediction was able to stratify patients with HNC in distinct high, intermediate, and low mortality risk groups. This can effectively be capitalised for personalised radiotherapy, e.g., for tumour radiation dose escalation/de-escalation

    Automated array-CGH optimized for archival formalin-fixed, paraffin-embedded tumor material

    Get PDF
    BACKGROUND: Array Comparative Genomic Hybridization (aCGH) is a rapidly evolving technology that still lacks complete standardization. Yet, it is of great importance to obtain robust and reproducible data to enable meaningful multiple hybridization comparisons. Special difficulties arise when aCGH is performed on archival formalin-fixed, paraffin-embedded (FFPE) tissue due to its variable DNA quality. Recently, we have developed an effective DNA quality test that predicts suitability of archival samples for BAC aCGH. METHODS: In this report, we first used DNA from a cancer cell-line (SKBR3) to optimize the aCGH protocol for automated hybridization, and subsequently optimized and validated the procedure for FFPE breast cancer samples. We aimed for highest throughput, accuracy, and reproducibility applicable to FFPE samples, which can also be important in future diagnostic use. RESULTS: Our protocol of automated array-CGH on archival FFPE ULS-labeled DNA showed very similar results compared with published data and our previous manual hybridization method. CONCLUSION: This report combines automated aCGH on unamplified archival FFPE DNA using non-enzymatic ULS labeling, and describes an optimized protocol for this combination resulting in improved quality and reproducibility

    Early star-forming galaxies and the reionization of the Universe

    Full text link
    Star forming galaxies represent a valuable tracer of cosmic history. Recent observational progress with Hubble Space Telescope has led to the discovery and study of the earliest-known galaxies corresponding to a period when the Universe was only ~800 million years old. Intense ultraviolet radiation from these early galaxies probably induced a major event in cosmic history: the reionization of intergalactic hydrogen. New techniques are being developed to understand the properties of these most distant galaxies and determine their influence on the evolution of the universe.Comment: Review article appearing in Nature. This posting reflects a submitted version of the review formatted by the authors, in accordance with Nature publication policies. For the official, published version of the review, please see http://www.nature.com/nature/archive/index.htm

    Radio pulsar populations

    Full text link
    The goal of this article is to summarize the current state of play in the field of radio pulsar statistics. Simply put, from the observed sample of objects from a variety of surveys with different telescopes, we wish to infer the properties of the underlying sample and to connect these with other astrophysical populations (for example supernova remnants or X-ray binaries). The main problem we need to tackle is the fact that, like many areas of science, the observed populations are often heavily biased by a variety of selection effects. After a review of the main effects relevant to radio pulsars, I discuss techniques to correct for them and summarize some of the most recent results. Perhaps the main point I would like to make in this article is that current models to describe the population are far from complete and often suffer from strong covariances between input parameters. That said, there are a number of very interesting conclusions that can be made concerning the evolution of neutron stars based on current data. While the focus of this review will be on the population of isolated Galactic pulsars, I will also briefly comment on millisecond and binary pulsars as well as the pulsar content of globular clusters and the Magellanic Clouds.Comment: 16 pages, 6 figures, to appear in Proceedings of ICREA Workshop on The High-Energy Emission from Pulsars and their Systems, Sant Cugat, Spain, 2010 April 12-16 (Springer
    corecore